Álgebra y Cálculo

Guía Práctica N° 9 Vectores en el plano y en el espacio

- 1. Calcule la magnitud y la dirección de los siguientes vectores pertenecientes a \mathbb{R}^2 . Grafique.
 - a) v = (0.2)
 - b) v = (1,3)
 - c) v = (-3.5)
 - d) v = (1, -3)
 - e) v = (2,0)
- 2. Sean los puntos en el plano P(0,3), Q(-1,2), R(2,-2) y S(4,-1), realice las siguientes operaciones y grafique los vectores resultantes:
 - a) $\overrightarrow{OQ} + \overrightarrow{OS}$
 - b) $\overrightarrow{PO} + \overrightarrow{RS}$
 - c) $\overrightarrow{SP} + 2\overrightarrow{PQ} \overrightarrow{OR}$
- 3. Dados los vectores u = (3,4) v = (-2,1) encuentre y grafique los vectores resultantes:
 - a) -2u + v
 - b) 3(v + u)
 - c) 5u + 6v
 - d) |u|v-v
- 4. Determine si el vector $u = (\frac{3}{5}, -\frac{4}{5})$ es un vector unitario. Justifique su respuesta.
- 5. Calcule el producto escalar de cada uno de los pares de vectores y el ángulo entre ellos:

a)
$$u = i - 3j$$
; $v = -i + 3j$; b) $u = -5i$; $v = 18j$ c) $u = 2i + 5i$; $v = -3i + 2j$

b)
$$u = -5i$$
. $v = 18i$

$$c(y) = 2i + 5i \cdot v = -3i + 2i$$

- 6. Determine si los siguientes pares de vectores son paralelos, ortogonales o ninguno de los dos. Justifique su respuesta y grafique cada par.
 - a) u = (3,5); v = (-6, -10)

c)
$$u = (2, -3)$$
; $v = (-9, -6)$
d) $u = (-2, 4)$; $v = (-1, -4)$

b)
$$u = (2,0)$$
; $v = (-5,0)$

d)
$$u = (-2,4); v = (-1,-4)$$

- 7. Sean u = 3i + 4j y $v = i + \alpha j$. Determine, si es posible, el valor α de tal que:
 - \boldsymbol{u} y \boldsymbol{v} sean ortogonales. a)
 - b) $\boldsymbol{u} \vee \boldsymbol{v}$ sean paralelos.
 - El vector w = u + v tenga magnitud 5.
- 8. Sean los vectores pertenecientes a R^3 : $\mathbf{u} = 3\bar{\imath} \bar{\jmath}$; $\mathbf{v} = 5\bar{\imath} + 2\bar{\jmath} 3\bar{k}$; $\mathbf{w} = (1, 1, 2)$ y $\mathbf{t} = (1, 1, 2)$ $2\bar{\iota} - \bar{k}$. Resuelva
 - a) t + 3w v
 - b) w.(u+v)
 - c) |w|y|t
 - d) El ángulo entre $oldsymbol{u}$ y $oldsymbol{w}$